WESTCODE

Date:- 6 Feb, 2001

Data Sheet Issue:- 1

Phase Control Thyristor Types N0910LS200 to N0910LS260

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{DRM}	Repetitive peak off-state voltage, (note 1)	2000-2600	V
V _{DSM}	Non-repetitive peak off-state voltage, (note 1)	2000-2600	V
V _{RRM}	Repetitive peak reverse voltage, (note 1)	2000-2600	V
V _{RSM}	Non-repetitive peak reverse voltage, (note 1)	2100-2700	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{T(AV)}	Mean on-state current, T _{sink} =55°C, (note 2)	910	А
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 2)	630	А
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 3)	386	А
IT(RMS)	Nominal RMS on-state current. T _{sink} =25°C, (note 2)	1788	А
I _{T(d.c.)}	D.C. on-state current. T _{sink} =25°C, (note 4)	1569	А
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5)	9.2	kA
Ітѕм2	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, (note 5)	10.1	kA
l ² t	$I^{2}t$ capacity for fusing t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5)	423×10 ³	A ² s
l ² t	$I^{2}t$ capacity for fusing t _p =10ms, V _{RM} ≤10V, (note 5)	510×10 ³	A ² s
-1: /-14	Maximum rate of rise of on-state current (repetitive), (Note 6)	300	A/µs
di⊤/dt	Maximum rate of rise of on-state current (non-repetitive), (Note 6)	600	A/µs
V _{RGM}	Peak reverse gate voltage	10	V
P _{G(AV)}	Mean forward gate power	4	W
Р _{GM}	Peak forward gate power	30	W
V _{GD}	Non-trigger gate voltage, (Note 7)	0.25	V
Tнs	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, $125^{\circ}C T_{j}$ initial.
- 6) V_D=67% V_DRM, I_TM=2000A, I_FG=2A, t_r \le 0.5 \mu s, T_{case}=125 ^{\circ}C.
- 7) Rated V_{DRM}, T_{case} =125°C.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
Vtm	Maximum peak on-state voltage	-	-	2.07	I _{TM} =1700A	V
V ₀	Threshold voltage	-	-	1.04		V
rs	Slope resistance	-	-	0.606		mΩ
dv/dt	Critical rate of rise of off-state voltage	1000	-	-	V _D =80% V _{DRM}	V/µs
I _{DRM}	Peak off-state current	-	-	60	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	60	Rated V _{RRM}	mA
V _{GT}	Gate trigger voltage	-	-	3.0	T _j =25°C	V
I _{GT}	Gate trigger current	-	-	300	T _j =25°C. V _D =10V, I _T =2A	mA
Iн	Holding current	-	-	1000	T _j =25°C	mA
р.	Thermal resistance, junction to	-	-	0.032	Double side cooled	K/W
R_{θ}	heatsink	-	-	0.064	Single side cooled	K/W
F	Mounting force	10	-	20		kN
Wt	Weight	-	340	-		g

Notes:-

1) Unless otherwise indicated $T_j=125^{\circ}C$.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade 'H'	V _{DRM} V _{DSM} V _{RRM} V	V _{RSM} V	V _D V _R DC V
20	2000	2100	1250
22	2200	2300	1350
24	2400	2500	1450
26	2600	2700	1550

2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13% C is applicable to this device for T_j below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

Where V_0 =1.04V, r_s=0.606m Ω ,

 R_{th} = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

Supplementary Thermal Impedance							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave Double Side Cooled	0.048	0.0436	0.0413	0.0388	0.036	0.0345	0.032
Square wave Single Side Cooled	0.079	0.0769	0.074	0.0716	0.0688	0.0665	0.064
Sine wave Double Side Cooled	0.0415	0.0394	0.0378	0.0355	0.032		
Sine wave Single Side Cooled	0.0735	0.0718	0.07	0.0679	0.064		

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.46	2.45	2	1.73	1.41	1.15	1
Sine wave	3.98	2.78	2.22	1.88	1.57		

5.2 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T , on page 7 is represented in two ways;

- (i) the well established V_o and r_s tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

25°C Coefficients			125°C Coefficients
А	0.908566	А	0.417877
В	0.02200912	В	0.1200233
С	3.661922x10 ⁻⁴	С	6.308007x10 ⁻⁴
D	0.005349066	D	-0.007297986

5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}} \right)$$

Where p = 1 to *n*, *n* is the number of terms in the series and:

- t = Duration of heating pulse in seconds.
- r_{t} = Thermal resistance at time t.
- r_p = Amplitude of p_{th} term.
- τ_{p} = Time Constant of r_{th} term.

D.C. Double Side Cooled							
Term	1 2 3 4						
r _p	0.01771901	4.240625×10 ⁻³	6.963806×10 ⁻³	3.043661×10 ⁻³			
$ au_ ho$	0.7085781	0.1435833	0.03615196	2.130842×10 ⁻³			

D.C. Single Side Cooled								
Term	erm 1 2 3 4 5							
r _p	0.03947164	0.01022837	8.789912×10 ⁻³	4.235162×10 ⁻³	1.907609×10 ⁻³			
$ au_{ ho}$	4.090062	1.078983	0.08530917	0.01128791	1.240861×10 ⁻³			

<u>Curves</u>

Figure 1 - On-state current vs. Power dissipation - Double Side Cooled (Sine wave)

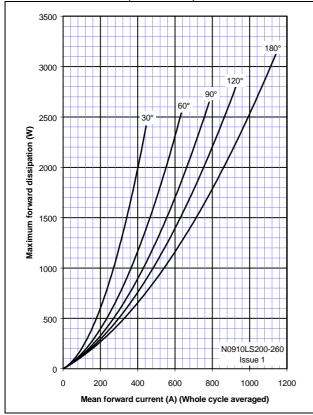


Figure 3 - On-state current vs. Power dissipation - Double Side Cooled (Square wave)

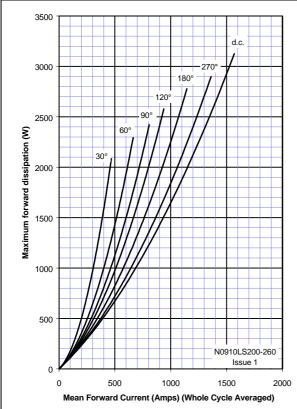


Figure 2 - On-state current vs. Heatsink temperature - Double Side Cooled (Sine wave)

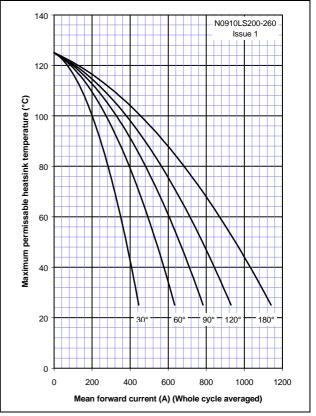
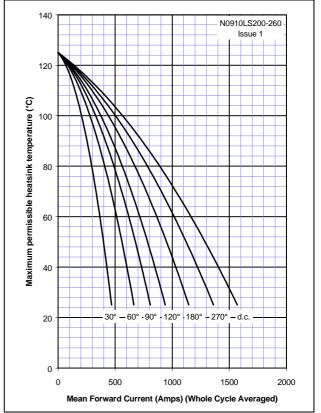



Figure 4 - On-state current vs. Heatsink temperature - Double Side Cooled (Square wave)

N0910LS200-260 Issue 1

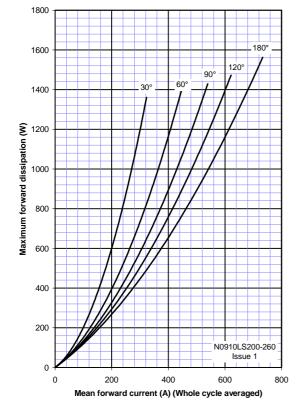


Figure 7 - On-state current vs. Power dissipation -

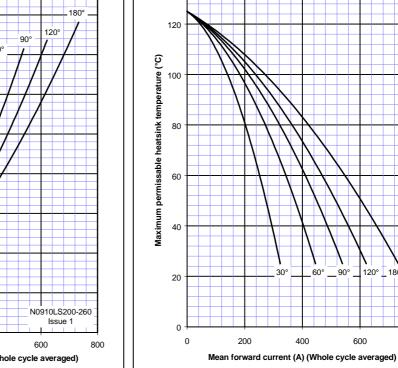
Single Side Cooled (Square wave)

1800

1600

1400

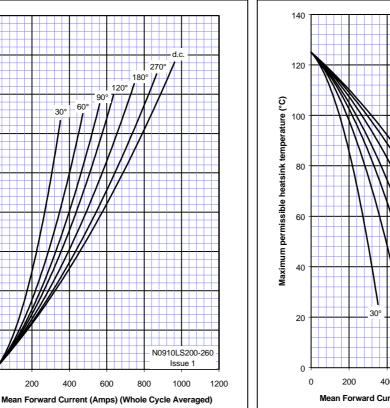
Maximum forward dissipation (W) 1000 008 000 000


400

200

0

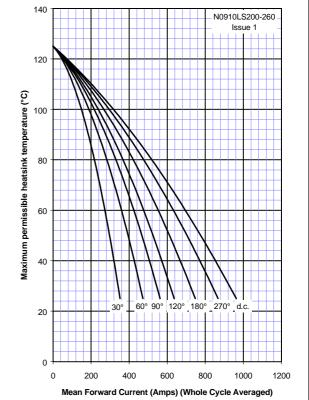
0


Figure 5 - On-state current vs. Power dissipation -Single Side Cooled (Sine wave)

140

Figure 6 - On-state current vs. Heatsink temperature - Single Side Cooled (Sine wave)

Figure 8 - On-state current vs. Heatsink temperature - Single Side Cooled (Square wave)



90°

120° _ 180°

600

800

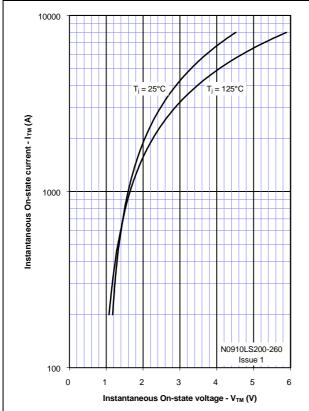


Figure 11 - Gate Characteristics - Trigger Limits

Max V_G dc

-40°C

0.3

Gate Trigger Current - IGT (A)

Min V_G dc

0.4

0.5

0.6

N0910LS200-260

Issue 1

 I_{GT}, V_{GT}

125°C 25°C -10°C

0.1

Tj=25°C

6

5

2

3

2

1

0

0

 I_{GD}, V_{GD}

3ate Trigger Voltage - V_{GT} (V)

Figure 9 - On-state characteristics of Limit device

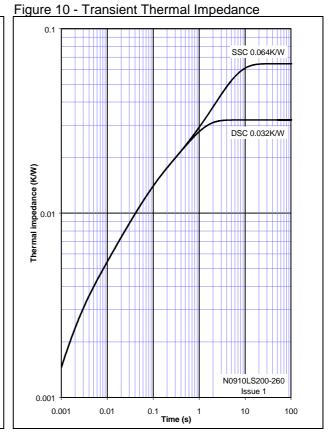
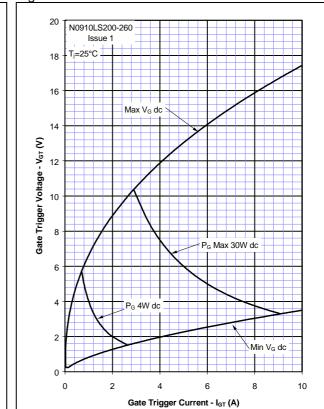



Figure 12 - Gate Characteristics - Power Curves

Data Sheet Issue 1. Types N0910LS200 to N0910LS260.

0.2

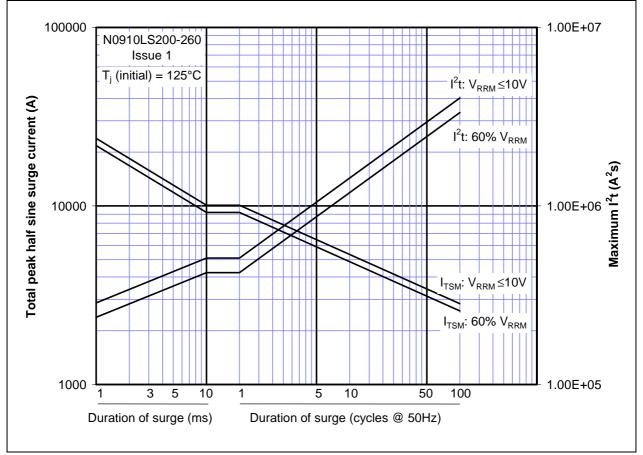
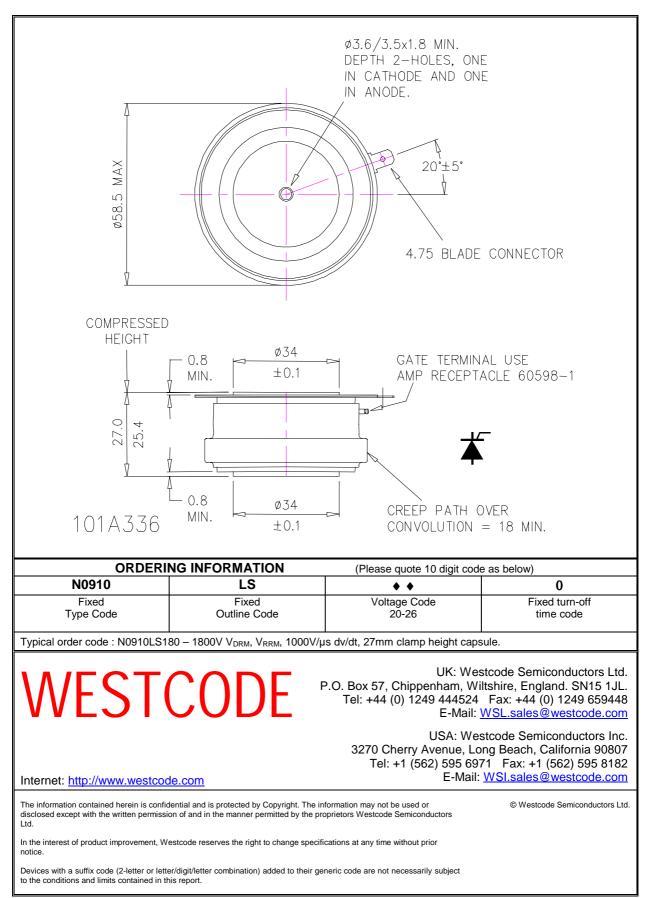



Figure 13 - Maximum surge and I²t Ratings

Outline Drawing & Ordering Information

